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a b s t r a c t

Different mechanisms may exists as a means to provide additional or specialized enhancement of exist-
ing nanoparticulate pinning in YBa2Cu3O7�x (YBCO) thin films. In the particular case of Y2BaCuO5 (Y211)
nanoparticles, Ca-doping of these nanoparticles via addition to the Y211 target material provides an addi-
tional increase to the Jc(H). YBCO + Y211 samples were created by pulsed laser deposition with alternat-
ing targets of YBCO with Y211 and Y211 doped with Ca. Initial indications suggest that this improvement
in pinning results from some scattered short-ranged self-assembly of the nanoparticles into short
nanocolumns.

Published by Elsevier B.V.
1. Introduction Although these nanoparticulate and nanocolumnar pinning
Significant progress has been made on the YBa2Cu3O7�x (YBCO
or Y123) superconductors with respect to its application as a high
temperature superconducting (HTS) wire [1,2]. With this, an
emphasis for its successful deployment, among others, is on
improvement in the magnetic flux pinning properties [3,4]. Most
methods of pinning enhancement, regardless of the particular
means of creating the pinning center, are largely dependent on
the geometry of the particular pinning centers in the high temper-
ature superconducting (HTS) film. Initially, a nanoparticulate dis-
persion of non-superconducting additions was demonstrated to
improve the critical current density (Jc) in YBCO and can poten-
tially provide an isotropic pinning enhancement for the supercon-
ductor [5–8]. The nanorod/nanocolumnar pinning centers created
by the addition of BaZrO3 (BZO) or BaSnO3 (BSO) or the more recent
RE3TaO7 (RTO), RE = rare earth, provide columnar pinning that
tends to preferentially provide enhancement in the c-axis direc-
tion, but still provides overall angular improvement [9–15].
B.V.

: +1 937 255 4307.
rnes).

1 
additions provide the expected enhancements due to their partic-
ular type of geometric inclusion, it does not account for the total
nature of their pinning. For example, it is known that chemical
interactions between the doping additions and the superconductor
can lower the Tc of the superconductor causing degradation of the
performance. This can limit the utility of some additions such as
BZO where excessive amounts heavily degrade the Jc in these sam-
ples [16]. Others can be more forgiving such as BSO or RTO [15,17].
Even so, the large improvements in YBCO when the applied field is
perpendicular to the face of the films (Hkc) are largely due to the
self-assembly of the added BZO, BSO, RTO, etc. pinning material
into nanorods and/or nanocolumns within the YBCO matrix. Since
Y211 when added to the YBCO provides improved pinning for Hkc
even though it tends not to self-assemble, it could potentially pro-
vide an even larger improvement if the nanoparticles could be
‘‘encouraged” to self-assemble into nanocolumnar structures.

A critical question, however, is whether this additional
improvement can be made by some simple modification. Research
has already demonstrated that the addition of Y211 as a nanopar-
ticulate dispersion in YBCO can effectively enhance its pinning
properties [5,18,19]. The focus of this paper is to point out how
self-assembly of the Y211 nanoparticles can be accomplished

http://dx.doi.org/10.1016/j.physc.2009.08.010
mailto:paul.barnes@wpafb.af.mil
http://www.sciencedirect.com/science/journal/09214534
http://www.elsevier.com/locate/physc
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through the doping by Ca of the Y211 target material leading to an
even greater enhancement of the pinning in YBCO + Y211 samples.
Doping of Ca at the Y site in YBCO films has been studied exten-
sively by many researcher as Ca is expected to increase the popu-
lation of holes in YBCO by replacing Y+3 with Ca+2 hence improving
superconductor coupling between the grains [20–23]. Hammerl et
al. have reported a 3 to 6-fold improvement of Jc for annealed
YBCO/Ca-doped YBCO/YBCO multilayer films [21]. Daniels et al.
have reported that Ca-doping increased the intergrain Jc in spite
of a lower Tc in the higher concentrations of Ca-doped YBCO films
[22]. Considering these factors, it seems reasonable to introduce
Ca-doped Y211 pinning as a combination effect of Ca-doping (by
diffusion) as well as the Y211 pinning in YBCO thin films, even if
self-assembly of the Y211 did not occur. However, the effects of
Ca-doped Y211 nanoparticles on grain boundaries, via bicrystals,
is reported elsewhere and not the subject here [24,25]. The results
presented here is the effect of the Ca-doped Y211 on YBCO films
deposited on single crystal substrates.
Fig. 1. Selected area diffraction pattern, 123-YBCO [1 0 0] zone axis pattern.
Electron diffraction pattern taken parallel to the substrate/thin film interface.

Table 1
Pattern reflections with corresponding phase identification and indexing. Orientation
relationship is (0 0 1)123//(0 0 1)211, [0 1 0]123//[1 0 0]211.

Reflection D (mm) R (mm) h (rad) d (Å) Phase ID Index

1 8.4 4.20 0.0032 3.9 123 010
2. Experimental

Flux pinning is studied in YBCO thin films deposited by pulsed
laser deposition (PLD). Details of the film deposition conditions
and process parameters are given elsewhere [17,18]. For Ca-doped
Y2BaCuO5 (Y211) nanoparticle additions, PLD targets were made by
solid-state reaction starting with high purity Y2O3, BaCO3, CuO, and
CaCO3 finely ground together in appropriate stoichiometric ratio of
Y1.9Ca0.1BaCuO5 (5 at.% Ca-doped Y211) and Y1.8Ca0.2BaCuO5

(10 at.% Ca-doped Y211). These powders were reacted and formed
into targets of dimensions 2.54 cm (1 inch) diameter and 1.5 cm
thick, using the standard solid-state sintering methods. To under-
stand the doping effect of Ca in the Y211 nanoparticulate structure,
we have deposited YBCO films with and without nanoparticulates
of Ca-doped Y211 in addition to YBCO films with plain Y211 nano-
particles. Polished LaAlO3 (LAO) and SrTiO3 (STO) (1 0 0) substrates
were used for growth of the films. Deposition parameters included
a KrF laser k = 248 nm wavelength, 3 J/cm2 laser fluence, 25 ns
pulse length, and 4 Hz laser repetition rate. A post-deposition an-
neal was conducted for the films at 500 �C and 1 atmosphere of
oxygen. Film thicknesses were in the range of 0.2–0.3 lm.

The superconducting transition temperature (Tc) was measured
using an AC susceptibility technique with the amplitude of the
magnetic sensing field strength, h, varied from 0.025 to 2.2 Oe, at
a sensing frequency of approximately 4 kHz. Magnetic Jc measure-
ments were made with a vibrating sample magnetometer (VSM) in
magnetic field strengths of 0–9 T, and a ramp rate of 0.01 (T s�1).
The Jc of the square-shaped samples was estimated using a simpli-
fied Bean model Jc = 15DM/R, where M is the magnetization/vol-
ume from M–H loops, and R is the radius of volume interaction.
Scanning electron micrographs were taken with FEI Sirion High
Resolution Microscope in ultra-high resolution mode using a
through-lens-detector (TLD), with magnifications up to 100 k�.
To study the microstructural properties by transmission electron
microscopy (TEM), cross sections were prepared using focused
ion beam systems. TEM Micrographs were taken using a Phillips
CM-200 with a field-emission source operating at 200 kV. Films
were also characterized using X-ray diffraction.
2 8.8 4.40 0.0034 3.7 123 011
3 9.9 4.95 0.0038 3.3 123 021
4 11.8 5.90 0.0045 2.8 123 031
5 2.8 1.40 0.0011 11.7 123 010
6 5.6 2.80 0.0021 5.8 123 020
7 8.4 4.20 0.0032 3.9 123 030
8 12.3 6.15 0.0047 2.7 211 002
9 10.5 5.25 0.0040 3.1 211 201
10 7.5 3.75 0.0029 4.4 211 101
11 16.8 8.40 0.0064 1.9 123/211 020/400
3. Results and discussion

Since the orientation of the Y211 material in the YBCO has not
yet been reported, this was considered first. To examine this, a
zone-axis selected area diffraction pattern (SAD) was collected,
with the e-beam directed perpendicular to the growth direction
of the YBCO film (Y123 phase). The SAD pattern contains
2

reflections from both the Y123 phase and the Y211 phase. Fig. 1
shows this zone axis pattern, along with phase identification and
indexing information which is given in Table 1. It should be noted
that the orientation of the Y211 is not random in the YBCO matrix.
The diffraction information not only shows the Y211 phase is
present, but has an orientation relationship within the matrix of
(0 0 1)123k(0 0 1)211 and [0 1 0]123k[1 0 0]211, showing that the
nanoparticles form epitaxially, although rotated about the cur-
rent-carrying Cu–O planes. The lattice parameters measured for
the 211-phase are approximately within 5% of the reported XRD
values for the phase. Given that the average Y211 nanoparticle size
is�10 nm, the lattice distortion is likely a result of the lattice strain
induced by the lattice parameter mismatch between the Y123 and
the Y211 phases.

It is well-known that Ca-doping in the bulk YBCO degrades the
intragranular current density [26]. Ca-doping is employed as a
trade-off or balancing of the intergranular and intragranular cur-
rent density to provide the maximum net overall critical current
(Ic) of the material. Based on this, it may be expected that a slight
decline could occur in these type of samples, but this is clearly not
the case. Fig. 2 shows that the addition of Ca to the Y211 material
inclusion provides an additional enhancement over and above that
 



Fig. 2. Magnetization Jc(H) for three different temperatures. Each curve set for the
different temperatures are from top to bottom: Ca-doped Y211 nanoparticles in
YBCO, Y211 nanoparticles in YBCO and plain YBCO. These depositions were carried
out at 800 �C.

Fig. 3. Cross-sectional TEM image of a Ca-doped Y211 nanoparticulate in YBCO
multilayer made with (Y0.9Ca0.1)2BaCuO5, a 10% Ca-doping concentration.
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of the plain Y211 nanoparticulate pinning. This enhancement is
maintained at various temperatures from 40 K to 77 K, and the full
range of applied magnetic fields studied, H > 0.1 T.
Fig. 4. Cross-sectional TEM image of plain Y211 nanoparticulate dispersions in YBCO mu
image showing a particular section in one sample where some self-assembly did occur w
typical nanoparticulate dispersion with no self-assembly.

3 
Examination of the material inclusion by TEM suggests that the
Ca-doped Y211 phase not only forms into nanoparticles, but is
beginning to self-assemble itself, as shown in Fig. 3 which is repre-
sentative of the Ca-doped Y211 pinned YBCO. This self-assembly is
not complete, with nanoparticles still present and most of the self-
assembly resulting in short nanorods as opposed to complete
nanocolumns extending the length of the films. Fig. 4 provides
TEM images for Y211 pinned YBCO with no Ca-doping. Fig 4a is
typical of most films regardless of the various deposition parame-
ters used. Some self-assembly did occasionally occur in the plain
Y211-pinned films, but not often being only in limited locations.
Fig. 4b provides an example of this and perhaps captures the most
extensive self-assembled section of the entire sample.

It should also be noted that the nanorods are not stringently
aligned in a particular direction. They are generally aligned in the
c-axis direction as opposed to the ab-planes, but there is a fairly
wide angular range for this growth. Exactly why the addition of
Ca to the Y211 nanoparticles will cause this to happen is unknown.
Even though it is not perfectly clear why self-assembly is initiated
with the addition of Ca-doped Y211, it does indicate the altering
the composition of the non-superconducting pinning addition
can provide an additional enhancement. With this improvement
due to partial self-assembly of the nanoparticles, it can potentially
be quite an effective improvement to nanoparticulate dispersions
by providing mixtures of nanorods and nanoparticles, as well as
a more random alignment of the nanorods, for a ‘‘best” overall in-
crease with respect to angular performance. Additional research is
required to investigate this.
4. Summary

In conclusion, this paper addressed a means to provide addi-
tional enhancement to the existing Y211 nanoparticulate pinning
in YBCO thin films. In this case, Ca-doping of the nanoparticle
(via the addition of Ca to the pinning-material target) provides
an additional boost to the Jc(H). Initial data was provided that
the Ca-doping is causing the Y211 nanoparticles to self-assemble
into short nanocolumns or nanorods. Future investigations could
be made to determine the angular dependence of the Ca-doped
Y211 pinned YBCO since it leads to a mixture of nanorod and nano-
particles which may provide an overall better isotropic pinning ef-
fect. This research does not necessarily mean that Ca-doping of all
material inclusions will provide enhancement.
ltilayer: (a) dark-field image of typical Y211 pinned YBCO films and (b) a bright-field
ithout Ca-doping. However, this is uncommon and other parts of the film display the
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